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Abstract

Two agents bargain over the allocation of a bundle of divisible commodi-
ties. After strategically reporting utility functions to a neutral arbitrator,
the outcome is decided by using a bargaining solution concept chosen from
a family that includes the Nash and the Raiffa-Kalai-Smorodinsky solu-
tions. When reports are restricted to be continuous, strictly increasing and
concave, it has been shown that this kind of “distortion game” leads to in-
efficient outcomes. We study the distortion game originated when agents
are also allowed to claim non-concave utility functions. Contrasting with
the previous literature, any interior equilibrium outcome is efficient and any
efficient allocation can be supported as an equilibrium outcome of the dis-
tortion game. In a similar fashion to the Nash demand game we consider
some uncertainty about the opponent’s features to virtually implement the
Nash bargaining solution.
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1 Introduction

Two persons settling a dispute often have incentives to make untruthful claims
about their preferences. Nevertheless, the application of standard bargaining
procedures requires a mediator that is informed about the agents’ preferences.
It is important to understand if manipulation of private information can affect
the desirable properties that the original solution concept has (Thomson [21]).
The bargaining literature has dedicated considerable attention to analyze if
strategic reports of preferences have incidence on the efficiency of bargaining
outcomes. A usual approach to this issue involves defining a “distortion game”
that determines the allocation of goods in a pure exchange economy. In such
games, a referee decides the final outcome by applying a bargaining concept
(such as Nash bargaining or the RKS solution) based on agents’ reported utility
functions.

Up to now, for such a procedure to generate Pareto-optimal allocations, the
reports of agents have been restricted to very particular families of utility func-
tions (e.g. Peters [15], Sobel [18] and [19], and Kibris [9]). If the utility functions
are continuous, strictly increasing and concave, there exist “non-pathological”
examples of Nash equilibrium reports that imply inefficient outcomes (see Exam-
ple 3). Instead of restricting, we expand the set of possible reports by including
non-concave utility functions. Paradoxically, if the outcome is interior, efficiency
is restored. In fact, if agents are slightly uncertain about the tastes of their bar-
gaining partners, we can say even more. Although the arbitrator ignores the
true preferences of the bargainers, we design a “perturbed” distortion game that
virtually implements the Nash bargaining outcome of the negotiation.

The simplest distortion games1 that have been studied are those in which a
single commodity is distributed. Although efficiency is not an issue for this type
of games, it is important to first understand how do agents best-respond in this
setting. The fact that bargainers can only claim to have concave (risk-averse)
utility functions leads to the existence of a dominant strategy equilibrium. As
seen in Crawford and Varian [5],2 it is optimal for agents to report linear utility
functions. This leads to equal division of the commodity.

The multiple commodity case is more complex. In this more general scenario
equilibrium outcomes are far from being characterized and some of them are not
necessarily Pareto-optimal. In order to achieve efficiency, Sobel [18] requires
linear reports from the agents. Thomson [22] reaches a similar result by using
quasilinear utility functions. Finally, Peters [15] only allows reports of preference
profiles that constitute an equilibrium if agents are telling the truth. Given this
precedents, it is natural to suspect that extending the strategy spaces (sets of
possible reports) makes the problem intractable. As mentioned before, quite
the opposite occurs. After expanding the set of possible reports an interior
allocation is an equilibrium outcome if and only if it is Pareto-optimal.

To select among the multiple equilibrium outcomes generated, we adapt our
1The distortion game technique was first used by Kurz [10] in reference to a taxation game

by Aumann and Kurz [1].
2Kannai [8] gives a more general result.
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distortion game so that it resembles the Nash demand game [13]. Following
Nash’s ideas, we assume that players are slightly uncertain about their oppo-
nents’ preferences and smooth their payoff functions. The procedure we use
is closest to the one described by Osborne and Rubinstein [14].3 Eventhough
Nash’s demand game and other smoothing models are not concerned with ma-
nipulative agents, we are able to preserve their approximate implementation
result.

2 The Model

A bargaining problem is defined as an ordered pair (S, d) where S is a nonempty,
compact, convex subset of R2, d = (d1, d2) ∈ S, and there is at least one s ∈ S
such that s >> d.4 Let B denote the family of all bargaining problems. A
bargaining solution is a function φ : B → R

2 such that φ(S, d) ∈ S. Given
(S, d) ∈ B define Ii = max{si | s ∈ S} for i = 1, 2. The bargaining problem
({( s1−d1

I1−d1
, s2−d2
I2−d2

) | s ∈ S}, (0, 0)) is called the 0− 1 normalization of (S, d). Let
the diagonal of the bargaining problem (S, d) be the set Diag(S, d) = {s ∈
S | s1−d1

I1−d1
= s2−d2

I2−d2
}. The bargaining solution φ is Pareto efficient if for any

(S, d) ∈ B, and any s, t ∈ S, s > t implies t 6= φ(S, d). φ is symmetric if for
any symmetric bargaining problem (S, d) ∈ B (i.e. (S, d) satisfies d1 = d2 and
∀s ∈ S, (s2, s1) ∈ S), φ(S, d) ∈ Diag(S, d). φ is invariant to positive affine
transformations if for any (S, d) ∈ B, a1, a2 ∈ R++, and b1, b2 ∈ R, φ

(
{(a1s1 +

b1, a2s2 +b2) | s ∈ S}, (a1d1 +b1, a2d2 +b2)
)

= (a1φ1(S, d)+b1, a2φ2(S, d)+b2).
φ satisfies midpoint dominance (also known as symmetric monotonicity) if any
0− 1 normalized bargaining problem (S, d) ∈ B satisfies φ(S, d) ≥ ( 1

2 ,
1
2 ). Let Φ

be the family of bargaining solutions that satisfy the previous four properties.
We now recall two famous examples of bargaining solutions. The Nash bar-

gaining solution [12] is NB(S, d) = argmaxs∈S, s≥d(s1−d1)(s2−d2). The Raiffa
- Kalai - Smorodinsky bargaining solution [7] RKS(S, d) is defined as the unique
element of Diag(S, d) whose components are strictly greater than those of any
other t ∈ Diag(S, d). Sobel [18] shows that both NB(S, d) and RKS(S, d) are
elements of Φ.

Consider an environment where two agents use an arbitrator to decide the
allocation of a bundle of goods ω ∈ Rn++. Define X = {x ∈ Rn | ~0 ≤ x ≤ ω}.5
Each agent i has (true) preferences described by the utility function ui : X −→
R, which is assumed to be continuous, strictly increasing, concave, smooth,6 and
0− 1 normalized so that ui(~0) = 0 and ui(ω) = 1. The set of all such functions
is denoted by U. Both agents know u1 and u2 but the arbitrator does not.

Let Ũ be defined as the set of reports ũ : X −→ R that are continuous,
strictly increasing, quasiconcave, smooth, and 0− 1 normalized. Given ũ1, ũ2 ∈
Ũ, define the utility possibility set as UPS(ũ1, ũ2) = {v ∈ [0, 1]2 | ∃(x1, x2) ∈

3Binmore [3] and van Damme [23] describe other ways of smoothing the payoffs.
4Given a, b ∈ Rm, a >> b means ai > bi for all i and a ≥ b means ai ≥ bi for all i.
5~0 denotes the vector (0, . . . , 0) ∈ Rn.
6By smooth we mean that each point on a level surface has a unique supporting hyperplane.
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X2 such that x1 + x2 ≤ ω and v ≤ (ũ1(x1), ũ2(x2))}. Our first example shows
that, as we are not assuming concavity on the reports, the utility possibility set
is not necessarily convex.

Example 1. Let n = 1, ω = 1, and ũ1(y) = ũ2(y) = y2. Then (0, 1) and (1, 0)
are in UPS(ũ1, ũ2), but ( 1

2 ,
1
2 ) is not. Clearly the UPS is not convex.

The outcome correspondence ψ : Ũ2 −→ X2 is defined as follows. If the
utility possibility set UPS(ũ1, ũ2) is convex, then ψ(ũ1, ũ2) = {(x1, x2) ∈
X2 | (ũ1(x1), ũ2(x2)) = φ(UPS(ũ1, ũ2), (0, 0))}. Otherwise, ψ(ũ1, ũ2) = {(~0,~0)}.
Given u1, u2 ∈ U and φ ∈ Φ, the distortion game G(u1, u2, φ) is played by agents
reporting utility functions ũ1, ũ2 from Ũ. An arbitrator selects the final alloca-
tion of the goods according to φ and agents evaluate their payoffs using u1 and
u2 respectively. The family of all distortion games is denoted by DG.

Given G(u1, u2, φ) ∈ DG, for each i ∈ {1, 2} define the best response cor-
respondence BRi : Ũ −→ Ũ letting BRi(ũ−i) = {ûi ∈ Ũ | ∀(x̂i, x̂−i) ∈
ψ(ûi, ũ−i),∀ũi ∈ Ũ,∀(x̃i, x̃−i) ∈ ψ(ũi, ũ−i), ui(x̂i) ≥ ui(x̃i)} for any ũ−i ∈ Ũ.7

The pair (u∗1, u
∗
2) ∈ Ũ2 is a Nash equilibrium of G(u1, u2, φ) if u∗i ∈ BRi(u∗−i)

for i = 1, 2.
In some cases, for example when both agents report identical and linear

utility functions, the outcome correspondence of the distortion game is multi-
valued. The issue of what outcome to choose is usually dealt with by establishing
a “tie-breaking mechanism”. With our definition of best response there is no
need for such a procedure. In fact, given a report ũ−i ∈ Ũ, if ûi ∈ BRi(ũ−i),
any outcome x̂ ∈ ψ(ûi, ũ−i) generates the same utility ui(x̂i). Thus, in a Nash
equilibrium agents are indifferent among all possible outcomes. An important
advantage of our enriched strategy space is that it allows existence of Nash
equilibria even with our quite stringent version of best response.8

It is important to emphasize that our efficiency theorems do not rely on the
ability that bargainers may have of choosing a Pareto-optimal allocation from
the ones proposed by the outcome correspondence. In previous results that
obtain efficient outcomes from linear reports [18], the tie-breaking mechanism
is essential. Here, efficiency is directly derived from the strategic interaction
between the bargainers.

3 Optimal Strategies

We take advantage of the players’ additional choices by analyzing the shape
of the UPS generated by their reports. The Pareto frontier of UPS(ũ1, ũ2) is
described, from agent i’s perspective, by the function h(ũi, ũ−i) : [0, 1] → [0, 1]
defined by h(ũi, ũ−i)(vi) = max{ũ−i(ω − xi) | xi ∈ X and ũi(xi) = vi}. The
function h(ũi, ũ−i) is well defined because ũ−i is maximized over a compact set.
The following lemma describes the standard properties of the Pareto frontier.

7Given i ∈ {1, 2}, we use the convention that −i is such that {i,−i} = {1, 2}.
8Our definition is more restrictive than, for example, those given in Thomson [20], Sobel

[18], or Peters [15].
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For the proof, we refer the reader to Billera and Bixby [2] or Chipman and
Moore [4].

Lemma 1. Given two utility functions ũi, ũ−i ∈ Ũ, the function h(ũi, ũ−i) is
continuous, strictly decreasing, and satisfies h(ũi, ũ−i)(0) = 1, h(ũi, ũ−i)(1) =
0. Furthermore, if ũi and ũ−i are (strictly) concave then h(ũi, ũ−i) is (strictly)
concave.

Suppose that, once the reports are given, an agent has the chance to revise
her strategy. Assume that she wants to transform the UPS into one whose
Pareto-frontier is characterized by a different shape. Our first proposition states
that this agent is able to report a utility function such that, without modifying
her ordinal preferences, achieves the desired transformation.

Proposition 1. Given ũi, ũ−i ∈ Ũ and ĥ : [0, 1] −→ [0, 1] a continuous, strictly
decreasing (hence invertible) function such that ĥ(0) = 1 and ĥ(1) = 0, let
ûi = ĥ−1 ◦h(ũi, ũ−i)◦ ũi. Then h(ûi, ũ−i) = ĥ. Additionally, for any x, y ∈ Rn+,
ũi(x) ≥ ũi(y) if and only if ûi(x) ≥ ûi(y).

The remaining part of this section determines what Pareto-frontier shape
is obtained in a Nash equilibrium. Our reasoning is based on the crucial role
(first studied by Sobel [18]) that midpoint dominance plays in distortion games.
Given a report ũ−i ∈ Ũ, this property restricts the final bundle of agent i to
the compact and convex set defined by Fi(ũ−i) = {xi ∈ X | ũ−i(ω − xi) ≥ 1

2}.
We call this the midpoint dominance restriction. If (x̃i, x̃−i) ∈ ψ(ũi, ũ−i) agent
i wants x̃i to lie on the frontier of Fi(ũ−i). When the strategy sets just include
continuous, strictly increasing, concave utility functions, our next example shows
this goal is not always achievable.

Example 2. Let n = 1, ω = 1, u1(y) = y, u2(y) = ũ2(y) =
√
y, and φ(S, d) =

NB(S, d). Then F1(ũ2) = [0, 3
4 ]. If non-concave reports are ruled out, the best

response for agent 1 is to report ũ1(y) = y and obtain
√

5−1
2 units of the good,

which is less than 3
4 units.

Adding non-concave reports to the strategy space changes things substan-
tially. In this case, agents can force the midpoint dominance restriction to be
binding.

Proposition 2. Given the distortion game G(u1, u2, φ) ∈ DG and ũ−i ∈ Ũ,
define ∀xi ∈ Rn+, ûi(xi) = 1− (h(ui, ũ−i) ◦ ui)(xi). Then (x̂i, x̂−i) ∈ ψ(ûi, ũ−i)
implies ũ−i(x̂−i) = 1

2 . Furthermore, ûi ∈ BRi(ũ−i).

When both agents best respond the utility pair selected by the bargaining
solution concept (using the reported utilities) must be ( 1

2 ,
1
2 ). We use this fact

to show that a necessary condition for a pair of reports to be a Nash equilibrium
is a linear Pareto-frontier.

Proposition 3. Let (u∗1, u
∗
2) be a Nash equilibrium of the distortion game G(u1, u2, φ) ∈

DG. Then, ∀vi ∈ [0, 1] ∀i ∈ {1, 2}, h(u∗i , u
∗
−i)(vi) = 1− vi.
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4 Efficiency of Equilibrium Outcomes

As an introduction to our efficiency results we examine an example, taken from
Sobel [18] and also mentioned in Peters [15]. It shows that the outcome of a
distortion game may not even be Pareto-optimal when agents are just allowed
standard concave reports.

Example 3. Let n = 2, ω = (1, 1), u1(y) = y
5
6
1 y

1
6
2 , u2(y) = y

1
2
1 y

1
2
2 , and

φ(S, d) = NB(S, d). If u∗1(y) = 1
8 (5y1+3y2) and u∗2(y) = y

1
2
1 y

1
2
2 then ψ(u∗1, u

∗
2) =

{
(
( 3

5 ,
1
3 ), ( 2

5 ,
2
3 )
)
}. With just concave reports Sobel shows that (u∗1, u

∗
2) is a Nash

equilibrium of the described distortion game. Still, the outcome is Pareto domi-
nated by the allocation

(
( 2

3 ,
1
5 ), ( 1

3 ,
4
5 )
)
.

When non-concave reports are allowed, we show that efficiency is restored.
The proof technique we use is similar to the one shown in Peters [15].

Proposition 4. Let (u∗1, u
∗
2) be a Nash equilibrium of G(u1, u2, φ) ∈ DG. Then,

any interior outcome (x∗1, x
∗
2) ∈ ψ(u∗1, u

∗
2) is Pareto optimal with respect to the

true utility functions (u1, u2).

The following examples show that it is not possible to dispose of the assump-
tions we make.

Example 4. Let n = 2, ω = (1, 1), u1(y) = y1+y2
2 , u2(y) = 2y1+y2

3 , and φ ∈ Φ.
Agent 1 reports u∗1(y) defined as follows: If 2y1+y2

3 ≤ 2
3 then u∗1(y) = 2y1+y2

4 .
Otherwise, if 2y1+y2

3 > 2
3 , u∗1(y) = 2y1+y2−1

2 . Agent 2 reports u∗2(y) = y1+y2
2 .

It can be verified that (u∗1, u
∗
2) is a Nash equilibrium for the distortion game

G(u1, u2, φ). The set of outcomes is ψ(u∗1, u
∗
2) = {

(
(1, 0), (0, 1)

)
}, but this allo-

cation is Pareto inferior to
(
( 7

12 ,
7
12 ), ( 5

12 ,
5
12 )
)
. Without interiority the outcome

is not necessarily Pareto optimal with respect to the true utility functions.

Example 5. Let n = 2, ω = (1, 1), u1(y) = y1+y2
2 , u2(y) = y

1
6
1 y

5
6
2 , and φ ∈

Φ. Both agents report u∗1(y) = u∗2(y) = min(y1, y2). It can be verified that
(u∗1, u

∗
2) is a Nash equilibrium for the distortion game G(u1, u2, φ). The set of

outcomes is ψ(u∗1, u
∗
2) = {

(
( 1

2 ,
1
2 ), ( 1

2 ,
1
2 )
)
}, but this allocation is Pareto inferior

to
(
( 3

4 ,
3
10 ), ( 1

4 ,
7
10 )
)
. Notice that the reported utility functions are not strictly

monotone, but this is not essential for the counterexample to remain valid. Thus,
smoothness is necessary to obtain an efficient outcome.

Proposition 4 can be interpreted as an analogous version of the first welfare
theorem for the distortion game method of allocating goods. It is then natural
to ask if the corresponding version of the second welfare theorem also holds.
The answer is affirmative.

Proposition 5. Let the outcome (x∗1, x
∗
2) ∈ X2 be Pareto optimal with respect

to the true utility functions (u1, u2). Then, every distortion game G(u1, u2, φ) ∈
DG has a Nash equilibrium (u∗1, u

∗
2) such that (x∗1, x

∗
2) ∈ ψ(u∗1, u

∗
2).
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Two important concerns arise at this point. First, the results we obtain de-
pend on the outcome correspondence punishing the agents when reports gener-
ate a non-convex utility possibility set. This discontinuity of the payoff function
puts agents in a situation in which the slightest variation of their strategy might
lead to disaster. Of course, bargainers are well aware that too much greed leads
to the disagreement outcome, but it is worth trying to express this intuition us-
ing less drastic methods. The second concern is the multiplicity of possible out-
comes shown in Proposition 5. Any Pareto efficient allocation may result from
Nash equilibrium behavior. Many “unfair” commodity distributions, although
efficient, might arise from distortion games that allow non-concave reports. It
is desirable to refine the set of equilibrium outcomes.

5 Selecting Among Outcomes

We intend to deal with the previous concerns by viewing our bargaining pro-
cedure as an application of the Nash demand game (See Nash [13]) within a
multi-commodity environment. Using our notation, the Nash demand game is
played between two agents with utility functions ui ∈ U that want to distribute
a pie of size one. Each agent simultaneously reports a minimum demanded
level of utility ūi ∈ [0, 1]. If (ū1, ū2) ∈ UPS(u1, u2), then agents obtain their
demands. Otherwise, the outcome is given by the vector (0, 0). It is interest-
ing that exactly the same issues mentioned in the previous paragraph are also
applicable for the Nash demand game.

To address these objections Nash smooths the payoffs of the agents and
then analyzes Nash equilibria as the smoothed game approximates to the orig-
inal. Several variants of this procedure exist in the literature. We will adapt
the method presented by Osborne and Rubinstein [14] to our distortion game
setting. To do so, we must redefine the outcome and best response correspon-
dences.

The modified outcome correspondence is defined as follows. If F1(ũ2) ∩(
{ω} − F2(ũ1)

)
6= ∅, then ψ′(ũ1, ũ2) = {(x1, x2) ∈ X2 | x1 + x2 ≤ ω and ∀i ∈

{1, 2}, ũi(xi) = 1
2}. Otherwise, ψ′(ũ1, ũ2) = {(~0,~0)}. In other words, if it is not

feasible to satisfy the demands made by both agents, they get nothing. On the
other hand, whenever possible, the arbitrator assigns each agent a bundle that is
barely sufficient to satisfy their reported midpoint dominance restrictions. Our
first task is to verify that the modified outcome correspondence is well defined.

Lemma 2. Given any pair of utility functions (ũ1, ũ2) ∈ Ũ2, ψ′(ũ1, ũ2) 6= ∅.

Although this modified distortion game does not depend on a specific bar-
gaining solution φ, it is quite similar to the version described in Section 2.
Best-responding agents in the original game are indifferent between the arbitra-
tor using ψ (with respect to some φ ∈ Φ) or ψ′ to determine the final outcome.
Indeed, Proposition 2 shows that best responses imply binding midpoint domi-
nance restrictions. Then, any Nash equilibrium of the original distortion game
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will remain an equilibrium with the modified outcome correspondence. Further,
equilibrium payoffs also remain unchanged.

Now we smooth the payoff functions of the agents. Given u1, u2 ∈ U, the
function P : R2

+ −→ [0, 1] is a perturbation with respect to the pair (u1, u2) if it
satisfies: (i) If v /∈ UPS(u1, u2), then P (v) = 0, (ii) If v lies in the interior of
UPS(u1, u2), then P (v) > 0, and (iii) P is differentiable (thus continuous) and
quasiconcave. We now give some intuition about perturbations. Assume that
agents are slightly uncertain about the true utility functions of their opponents
or about the size of the bundle ω. As observed in Osborne and Rubinstein [14],
the function P can be interpreted as the probability of a deal being reached.
When demands from agents grow closer to the boundary of the UPS there is a
bigger chance of facing disagreement. Of course, if demands are incompatible
the disagreement outcome is certain.

Given u1, u2 ∈ U and P a perturbation with respect to (u1, u2), the per-
turbed distortion game G(u1, u2, P ) is played by agents reporting utility func-
tions ũ1, ũ2 ∈ Ũ. An arbitrator then uses the modified outcome correspondence
to determine the allocation of the goods. Agents are now interested on maxi-
mizing their expected utility.

For any perturbed distortion game G(u1, u2, P ) and any agent i ∈ {1, 2},
define the perturbed best response correspondence by letting BRi : Ũ −→ Ũ as
BRi(ũ−i) = {ûi ∈ Ũ | ∀(x̂i, x̂−i) ∈ ψ(ûi, ũ−i),∀ũi ∈ Ũ,∀(x̃i, x̃−i) ∈ ψ(ũi, ũ−i),
ui(x̂i)P (ui(x̂i), u−i(x̂−i)) ≥ ui(x̃i)P (ui(x̃i), u−i(x̃−i))} for any ũ−i ∈ Ũ. The
pair (u∗1, u

∗
2) ∈ Ũ2 is a Nash equilibrium of G(u1, u2, P ) if u∗i ∈ BRi(u∗−i) for

i = 1, 2. Once again we may show existence of equilibrium thanks to the richness
of our strategy space.

Proposition 6. Any perturbed distortion game G(u1, u2, P ) has a Nash equi-
librium.

Define a discontinuous function P̄ : R2
+ −→ [0, 1] by letting P̄ (v) = 1 if

v ∈ UPS(u1, u2) and P̄ (v) = 0 otherwise. Construct a sequence of perturbed
games {Gk(u1, u2, P

k)}∞k=1 such that P k converges towards P̄ . The degree
of closeness between a perturbation P k and the limit P̄ is measured by the
(Hausdorff) distance between the true UPS and the set of utility pairs that,
given P k, yield an agreement with probability one. In short, the sequence of
perturbed games converges towards the modified distortion game. The question
at hand is if any sequence of equilibrium outcomes (x∗k1 , x∗k2 ) converges and if
so, what is the limit. Our last proposition answers both questions.

Proposition 7. Let {Gk(u1, u2, P
k)}∞k=1 be a sequence of perturbed distortion

games such that the Hausdorff distance between UPS(u1, u2) and the set {v ∈
R

2
+ | P k(v) = 1} converges to zero as k −→ ∞. For any k ≥ 1, let (u∗k1 , u∗k2 )

be a Nash equilibrium of Gk(u1, u2, P
k) and choose (x∗k1 , x∗k2 ) ∈ ψ′(u∗k1 , u∗k2 ).

Then, the limit as k −→∞ of
(
u1(x∗k1 ), u2(x∗k2 )

)
is the Nash solution NB(UPS(u1, u2), (0, 0)).

To quote Serrano [17] when referring to the Nash demand game, “we learn
that in negotiations with uncertainty [...] but where beliefs are concentrated
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around the truth, Nash equilibrium [...] yield[s] an outcome that gravitates
towards the Nash solution.” We have managed to demonstrate the same result
when the preferences of the agents are unknown to the mediator.

6 Final Remarks

We conclude by describing how the results in this paper are related to three
different but closely related research avenues: The Nash program, implemen-
tation theory, and distortion games. The Nash program intends to give non-
cooperative support to cooperative solution concepts which are usually based on
a system of axioms. In the case of the Nash bargaining solution, Nash gives such
support by analyzing smoothed demand games. The result of his procedure is
a pair of utility levels that complies with the axioms but depends crucially on
the preferences of agents. Bargainers then have incentives to misrepresent their
true utility function, most probably violating the axioms. For this reason im-
plementation theory takes to the task of creating mechanisms that are founded
not on preferences but on outcomes.

The output of the mechanism we describe, the allocation of a multi-commodity
bundle, is completely independent of agents’ preferences. In that sense, our work
can be understood as a contribution to Nash bargaining implementation. The
Nash bargaining solution does not satisfy Maskin-monotonicity (c.f. Maskin
[11]), a necessary condition for exact implementation of a concept (see Serrano
[16]). From this perspective, our approximate implementation result is the best
we could have hoped for.

The literature on distortion games coincides with the spirit of implemen-
tation as it studies manipulation of private information by bargainers. The
difference between them is that implementation theory does not put restric-
tions on the structure of the game that generates the desired outcomes. Given
that a distortion game requires an arbitrator to apply the original concept on
the reported utility functions, it comes as no surprise that up to now the re-
lated results have been limited to preserve basic properties such as efficiency.
The main contribution of this paper is to achieve virtual implementation in the
very intuitive but restrictive setting of distortion games.
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Appendix

Proof of Proposition 1: As ĥ is strictly decreasing, its inverse also has this property. The
function ĥ−1 ◦h(ũi, ũ−i) (applied to ũi to transform it into ûi) is a monotone transformation
because it is the composition of two strictly decreasing functions. Consequently, the ordinal
preferences of agent i remain unchanged.

Fix vi ∈ [0, 1] and let x̄i maximize ũ−i(ω − xi) subject to ûi(xi) = vi. By definition of

ûi we have h(ũi, ũ−i)(ũi(x̄i)) = ĥ(vi). Using the fact that the allocation (x̄i, ω− x̄i) must be

Pareto optimal with respect to the reports (ũi, ũ−i), we conclude that ũ−i(ω − x̄i) = ĥ(vi).

Hence, h(ûi, ũ−i)(vi) = ĥ(vi). �

Proof of Proposition 2: By Proposition 1, the Pareto frontier of UPS(ûi, ũ−i) is linear,
so φ(UPS(ûi, ũ−i), (0, 0)) = ( 1

2
, 1

2
). Efficiency of φ implies that any outcome (x̂i, x̃−i) ∈

ψ(ûi, ũ−i) is Pareto optimal with respect to the pair of reports (ûi, ũ−i). As ûi is a monotone
transformation of ui, the outcome is also optimal with respect to (ui, ũ−i). We conclude that
x̂i must maximize ui over Fi(ũ−i). Midpoint dominance of φ then implies ûi ∈ BRi(ũ−i). �

Proof of Proposition 3: The utility possibility set UPS(u∗1, u
∗
2) must be convex, other-

wise agents have incentives to deviate from the (~0,~0) outcome. Let (x∗1, x
∗
2) ∈ ψ(u∗1, u

∗
2).

Proposition 2 implies φ(UPS(u∗1, u
∗
2), (0, 0)) = ( 1

2
, 1

2
).

In what follows we show that if φ(S, d) = ( 1
2
, 1

2
) and (S, d) is a 0-1 normalized bargaining

problem, then the Pareto frontier of S is linear. Suppose not. Then, S must contain at least
one vector (v1, v2) such that v1 + v2 > 1. Without loss of generality, assume v2 > v1. Con-
vexity implies that ( v2

1+v2−v1
, v2

1+v2−v1
) is in S as it is a linear combination of (v1, v2) and

(1, 0). Furthermore, v1 + v2 > 1 implies that v2
1+v2−v1

> 1
2

. This contradicts the efficiency of

φ. �

Proof of Proposition 4: Let (x∗1, x
∗
2) ∈ ψ(u∗1, u

∗
2) be such that x∗i ∈ Rn++ for i = 1, 2. By

efficiency of φ, (x∗1, x
∗
2) is Pareto optimal with respect to the reports (u∗1, u

∗
2). This means

the convex sets F1(u∗2) and {ω} − F2(u∗1) have disjoint interiors and there exists a separating
hyperplane H between them. The fact that u∗1 ∈ BR1(u∗2) implies there is no (x1, x2) ∈ X2

such that x1 + x2 = ω, u∗2(x2) > u∗2(x∗2) = 1
2

, and u1(x1) > u1(x∗1). Thus, the convex sets
F1(u∗2) and {x1 ∈ X | u1(x1) ≥ u1(x∗1)} have disjoint interiors and there exists a separating
hyperplane H1 between them. A symmetric argument shows that the convex sets {ω}−F2(u∗1)
and {ω} − {x2 ∈ X | u2(x2) ≥ u2(x∗2)} have disjoint interiors and there exists a separating
hyperplane H2 between them.

The smoothness and interiority assumptions imply that H = H1 = H2. Consequently, H
also separates the interiors of {x1 ∈ X | u1(x1) ≥ u1(x∗1)} and {ω} − {x2 ∈ X | u2(x2) ≥
u2(x∗2)}. This makes allocation (x∗1, x

∗
2) Pareto optimal with respect to the true utility func-

tions, as we wanted. �

Proof of Proposition 5: Define u∗1 as a function that represents the same ordinal preferences

as u1 and satisfies u∗1(~0) = 0, u∗1(ω) = 1, and u∗1(x∗1) = 1
2

. Use Proposition 2 to construct
u∗2 in such a way that, without changing the true ordinal preferences of agent 2, h(u∗1, u

∗
2) is

linear. As (x∗1, x
∗
2) is Pareto optimal with respect to (ui, u

∗
−i), u

∗
i ∈ BRi(u∗−i) for i = 1, 2, so

(u∗1, u
∗
2) is a Nash equilibrium of G(u1, u2, φ). Finally, u∗2(x∗2) = 1

2
because (x∗1, x

∗
2) is Pareto

optimal with respect to (u∗1, u
∗
2) and h(u∗1, u

∗
2) is linear. Therefore, (x∗1, x

∗
2) ∈ ψ(u∗1, u

∗
2). �

Proof of Lemma 2: Assume there exists x1 ∈ F1(ũ2) ∩
�
{ω} − F2(ũ1)

�
as otherwise

the result is trivial. Define x2 = ω − x1. Then, for any i ∈ {1, 2}, ũi(xi) ≥ 1
2

. Let

αi = min{α ∈ [0, 1] | ũi(αxi) ≥ 1
2
}. We conclude that (α1x1, α2x2) ∈ ψ′(ũ1, ũ2) because

ũi(αixi) = 1
2

and α1x1 + α2x2 ≤ x1 + x2 = ω. �

Proof of Proposition 6: Let (v∗1 , v
∗
2) maximize the continuous function v1v2P (v1, v2) over

the compact set UPS(u1, u2). It must be the case that v∗1v
∗
2P (v∗1 , v

∗
2) > 0, so v∗i maxi-
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mizes viP (vi, v
∗
−i) over [0, 1]. For any i ∈ {1, 2} define u∗i ∈ Ũ as a monotone transfor-

mation of ui such that u∗i (xi) = 1
2

if and only if ui(xi) = v∗i . We claim that (u∗1, u
∗
2) is

a Nash equilibrium of G(u1, u2, φ, P ). Indeed, suppose that u∗i /∈ BRi(u
∗
−i). Then, there

exist x∗ ∈ ψ′(u∗i , u∗−i), ũi ∈ Ũ , and x̃ ∈ ψ′(ũi, u∗−i) such that ui(x̃i)P (ui(x̃i), u−i(x̃−i)) >
ui(x

∗
i )P (ui(x

∗
i ), u−i(x∗−i)). The definition of u∗−i implies that u−i(x̃−i) = u−i(x∗−i) = v∗−i.

This implies that v∗i does not maximize viP (vi, v
∗
−i) over [0, 1], a contradiction. �

Proof of Proposition 7: For any k ∈ N, let (u∗k1 , u∗k2 ) be a Nash equilibrium of the perturbed
game Gk(u1, u2, φ, Pk) and (x∗k1 , x∗k2 ) ∈ ψ′(u∗k1 , u∗k2 ). Define π∗k = Pk(u1(x∗k1 ), u2(x∗k2 )).
The number π∗k is well defined because the best response definition implies that, at a par-
ticular Nash equilibrium, any outcome generates the same utility for each agent. Osborne
and Rubinstein [14] show that if v∗i maximizes viP (vi, v

∗
−i) over [0, 1] for i ∈ {1, 2}, then

(v∗1 , v
∗
2) maximizes v1v2 subject to P (v1, v2) ≥ P (v∗1 , v

∗
2). Thus, (u1(x∗k1 ), u2(x∗k2 )) max-

imizes v1v2 over {(v1, v2) ∈ R2
+ | Pk(v1, v2) ≥ π∗k}. Define the set Pk1 = {(v1, v2) ∈

R2
+ | Pk(v1, v2) = 1}. Then (u1(x∗k1 ), u2(x∗k2 )) belongs to the region {(v1, v2) ∈ R2

+ | ∀v̄ ∈
Pk1 , v1v2 ≥ v̄1v̄2}∩UPS(u1, u2), which as k →∞ converges to NB(UPS(u1, u2), (0, 0)). �
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